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Shape Design Sensitivity Analysis for Interface Problem In
Axisymmetric Elasticity
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A boundary integral equation method in the shape design sensitivity analysis is developed for
the elasticity problems with axisymmetric non-homogeneous bodies. Functionals involving
displacements and tractions at the zonal interface are considered. Sensitivity formula in terms of
the interface shape variation is then derived by taking derivative of the boundary integral
identity. Adjoint problem is defined such that displacement and traction discontinuity is
imposed at the interface. Analytic example for a compound cylinder is taken to show the validity
of the derived sensitivity formula. In the numerical implementation, solutions at the interface for
the primal and adjoint system are used for the sensitivity. While the BEM is a natural tool for
the solution, more generalization should be made since it should handle the jump conditions at
the interface. Accuracy of the sensitivity is evaluated numerically by the same compound
cylinder problem. The endosseous implant-bone interface problem is considered next as a
practical application, in which the stress value is of great importance for successful osseo integra
tion at the interface. As a preliminary step, a simple model with tapered cylinder is considered
in this paper. Numerical accuracy is shown to be excellent which promises that the method can
be used as an efficient and reliable tool in the optimization procedure for the implant design.
Though only the axisymmetric problem is considered here, the method can be applied to general
elasticity problems having interface.

Key Words: Boundary Integral Equation Method, Interface Problem, Boundary Element
Method, Shape Design Sensitivity Analysis, Endosseous Implant

1. Introduction

There are many kinds of multiple zone prob
lems in which the interface shape is an important
factor. One of such examples is found mainly in
the biomechanics application such as the end os
seous implant design in the dentistry or orth
opedics in which the proper stress at the interface
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should be imposed for successful bone remodel
ling(Rieger et al., 1990, Tadano et al., 1994).
Another example is in the thermal mold design in
which optimum shape of the interface is to be
determined for the mold consisting of two mate
rials with different conductivity to enhance the
thermal performance (Rezayat and Jantzen, 1995).

Sensitivity analysis has long been a subject as
an efficient and reliable ingredient in optimiza
tion study of mechanical components. From
numerical point of view, there have been two
directions so far. One is discrete method such as
finite differences or semi-analytic method, which
are to calculate the derivatives of the functional
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by finite differences directly or calculate deriva
tives from the discretized matrices. While these
methods are simple to implement, it is known that
they are not efficient and reliable since all the
process is done in the discretized domain. The
other one is continuum method where a sensitiv
ity formula is derived analytically based on the
continuum formulation and computation is con
ducted afterwards using the formula. While this is
known better suited for the sensitivity analysis,
the process of the derivation is not straight
forward, and needs good amount of mathematical
knowledge. Depending on the formulation, there
have also been two directions in the continuum
method. One is domain method in which domain
functional is defined, and the sensitivity formula
is derived based on the variational equation. For
the numerical implementation, finite element
method is mostly used (Haug et al., 1986). The
other one is boundary method, which is to derive
sensitivity for the boundary functionals. Since in
most design situations, critical problem usually
arises at the boundary, the boundary method is
more suited for the design problems. Due to this
advantage, the boundary methods have recently
been studied in many different literatures, having
their own characteristics, e. g., using BEM in the
variational formulation by Mota Soares and Choi
(1986), the use of Lagrange multiplier by Meric
(1987), direct use of the boundary integral equa
tion by Barone and Yang(1988) and Zhang and
Mukherjee (1989). Boundary integral method
developed by the authors (Choi and Kwak, 1988;
Lee and Kwak, 1992) is also one of such direc
tions, which is to utilize a boundary integral
identity, a boundary form of Betti's reciprocal
formula. This formulation however has advantage
over the other boundary methods in that the
procedure is more general, and the derived sensi
tivity formula can be computed by using any kind
of solver such as the BEM and FEM, though the
BEM is more natural for the implementation.

This paper addresses sensitivity analysis with
respect to the interface shape in multi-zone prob
lem. Despite its importance and usefulness, only a
few studies are found, which began by the people
using domain method, hence, the finite element

method. At first they found the resulting formula
gives bad accuracy on the interface boundary, and
it was overcome afterwards by introducing
domain or boundary layer velocity field, which is
however inefficient since it causes the computa
tion over the whole or the part of the domain for
the sensitivity(Choi and Seong, 1986; Seong and
Choi, 1987). While further study not found after
wards, a paper is found very recently in the ther
mal conduction problem by Dems and Mroz
(1998). In the present paper, sensitivity analysis
by the boundary integral method is conducted for
the axisymmetric elasticity problem as in Lee and
Kwak(1992) and Lee(l996), but the formulation
is extended to deal with the problem with zone
interface. Functionals are considered at the inter
face, having design parameters as the interface
shape. Adjoint system is defined such that a
certain jump condition is imposed at the interface,
which means more generalization should be made
for the analysis code to solve it. A simple com
pound cylinder problem is considered to show the
validity of the present method in analytic as well
as numerical way.

The motivation of the present study was begun
in finding an optimum shape of the post-type
dental implant(Rieger et al., 1990; and Lozada et
al., 1994). Though there are large number of
implant designs nowadays, each claiming unique
geometric features and long-term stability, many
of those designs lack supporting evidence of their
effectiveness. In clinical point of view, it is well
known that the implant should be made and used
such that permanent osseointegration occur at the
implant-bone interface, and this is only possible
if the stresses are maintained at the interface with
a certain magnitude. If overstressed or understres
sed, it is known to cause bone resorption or
atrophy. The implant shape hence is an important
factor that influences dominantly to the stress
pattern at the interface, and the sensitivity analy
sis conducted here can be a good tool for finding
true or global optimum design. A tapered cylin
der implant, which was treated in Lozada et al.
(1994), is chosen as a preliminary step toward
more practical study of many screw type implants.
Due to its geometry and loading condition, the
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(7)

(6)

problem is considered axisymmetric. Once the
sensitivity of reasonable accuracy can be success
fully obtained, finding optimum design is straight
forward, which will be addressed in the next
paper.

2. Shape Design Sensitivity of
Single Domain

Consider first a single axisymmetric body ,Q of
(r, z) coordinate as shown in Fig. 1. Stress
equilibrium equation under zero body forces is
imposed, and the boundary condition for the
problem is defined as follows.

J...(r<5T7') r+<57Zz-J...<566=0, when i=r)r . 'r .
m,Q

J...(r<5zr) r+<5zzz=O, when i=zr . ,

(I)

Ui= a, on Tu (2)

Pi= Pi on t;
where i, j denote rand z directions respectively,
<566 is hoop stress and Pi is traction vector, i. e., Pi
= <5unj' The detail procedure for deriving sensi
tivity formula of this problem can be found in Lee
and Kwak (1992) or Lee (1996). A boundary
integral identity is stated which holds for any two
functions that satisfy Eq. (I)

(3)

where the two sets of functions (Ui, Pi) and (u:,

pi) are called primal and adjoint variables
respectively. Consider now a functional involving
displacement and traction over the whole bound
ary as

lfJ= JlfJ(Ui, Pi)rds (4)

Take material derivative of this functional as well
as boundary integral identity with respect to the
shape variation which is denoted as velocity
vector V;. Then the analytic formula for the
sensitivity of the functional is given after lengthy
derivation as

lfJ'= J { - Ui,s<5U Vkejk +PiU:.j Vi +PiU: ( VSs

+.i:.-) _J...ura:6 Vn} rds + ( (lfJUi - pi)
r r I-;

z

"---------~ r

Fig. 1 Single body in axisymmetric elasticity

ii .rds + ( (lfJPi + un i .rds + ( lfJ ( VSss. Jr
+.i:.-) rds (5)

r

where Vn, Vs denote normal and tangential com
ponents of the shape variation, lfJU i , lfJPi are the
partial derivative of lfJ with respect to u., Pi' and

r =nrVn-nzVs
VSs= Vk,SSk

[0-I]
ejk= I 0

Note here that VSs is differential of the element
ds with respect to the shape variation, which
involves only tangential derivatives, hence, is
called surface divergence of Vk • The boundary
condition for the adjoint variable is defined by

U: = - lfJPi on Tu (8)

p~ = lfJU i on Tp

The computational procedure starts from solving
the primal problem satisfying the boundary con
dition (2). Then using the solution, solve for the
adjoint problem with the boundary condition
(8). Define next the proper velocity vector de
scribing boundary shape variation. Finally the
sensitivity is calculated by the formula (5) using
both the primal and adjoint solutions at the
boundary in terms of velocity vector. As stated
previously, the use of boundary element method is
natural for the solutions. Then the solution for
(Ui, Pi) at the boundary is obtained. However,
other forms are also necessary in (5) such as Ui.S,
Ui,j, <5u, which are not directly calculable. These
can be expressed mostly in terms of u.. Pi using
simple algebraic relation, which does not lose its
accuracy. Note however all of them also include
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Ui,S which should be calculated by a numerical
differentiation, and lose accuracy by an order.

Nevertheless the resulting accuracy has been
proved excellent by many examples especially

compared to those by finite elements.

3. Shape Design Sensitivity of Multi
Zone in Axisymmetric Elasticity

z

( 10)

lJf'=

"------------+ r

Fig. 2 Two-zone body in axisymmetric elasticity

( 16)

( 15)

As noted above, the primal as well as the
adjoint problem can be solved in principle by any

code since the formula is based on continuum
formulation. However, since all the computation
is done over the boundary variables, the bound

ary element method is more natural. Use of com
mercial boundary element SjW such as BEASY

{

- Uf.s((J);. - at· ) Vkejk+P7(u)j-urj) Vi }

1 + C( l' 2') ( vs i ) I C( 1. ..2') V. rdsrc Pi Ui -Ui 0s+- --UT 1588-088 nr r

where the shape variation is limited to the inter
face boundary. It should be reminded that the

tangential and normal directions defined above
are for the 1st zone, and those of 2nd zone should

be reversed. As a result, the sign of Vn and ajas
of the 2nd zone has been changed. To relate the
implicit derivatives in (13) and (14), define

adjoint problem with the interface condition

u!* - ui" = - ,I,p
I I 'fl. I t F.

p}*+p7*=J/fUI a c

and all the prescribed values at the external
boundaries are zero. This means the displacement
or the traction should have jump at the interface.
Then the desired sensitivity formula is obtained

as follows.

Zl != U?= Uc
I I I at r,

p}= - P7=P~ c

If the two identities are summed, and the continu

ity condition is applied, we get

((uIP}*-p}ztI*)rds+( (urp;*s, i:
-phd*) rds+ ( {uf(p}*+P7*) -pHul*Jrc
-zd*)}rds=O (II)

Functional is defined at the interface rc between
adjacent zone as follows, where the design param
eter is the interface shape.

( (ulp}*-p}ul*)rds=O, n=raurc (9)i:
( (urp;*-phd*) rds=O, Fi=rburcJr,

lJf'= ( (J/fu,uH J/fp,M) rds+ ( J/f(VSsire i:
+1:.-) rds (13)

r
Take the derivative to each boundary integral
identity respectively, sum the resulting two equa
tions, and apply continuity condition (10) after

wards to obtain

( (ldp}* - Mltl*) rds + ( UdP7* - P7ur*) rds}ra i:

Consider next domain with two sub-regions

which have different material properties denoted
by superscript I and 2 as shown in Fig. 2. Then
the boundary integral identity holds for each sub

region

At the interface boundary Ts: primal variable for
zone I and 2 should satisfy the following continu

ity condition

lJf= ( 'ir(Ui, p;) rds= ( 'ir(ur, p~) rds (12)ire ire
Then the material derivative of the functional is
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is also quite desirable and reduce the unnecessary

burden due to its reliability and convenience.

However the adjoint problem defined above

requires handling jump condition at the interface.

While the traction discontinuity is treated in

BEASY, imposing displacement discontinuity is

not possible. Therefore a special boundary ele

ment program has been developed to this end for

multi-zone axisymmetric elasticity, which enables

such kind of jump conditions.

z

x

Fig. 3 Compound cylinder problem

4. Analytic Example in Axisymmetric
Elasticity

du" I
da = 2fLi c1

«(3+d)b2-(I-f3)a2
C

«(3+ d) b2+ (1- (3)a2 (J

(21)

Consider a compound cylinder as shown in

Fig. 3 where the radii of the inner and outer

cylinder are a and b respectively, and uniform

tension with magnitude a is applied in the radial

direction at the external radius of outer cylinder.

Material properties for the inner and outer cylin

der are u', Vi and u", v" respectively. For the

axial direction, plane stress condition is assumed.

The purpose is to get sensitivity formula for

displacement and stresses at the interface with

respect to the radius a. Analytic solution for the

displacement and stresses of this problem can be

found in any literature as follows (Ugural and

Fenster, 1975). Let the displacement and stress in

the radial direction at the interface be u" and a".
Then the continuity condition for the traction at

the interface is given by

Consider now a displacement and stress func

tional defined at the interface as

'. 0. .1. 0u; -Uk =-,/,P.= at F,
p~·+p%·=y,u.=1 when k=r only C

(24)

where the length in z-direction is assumed unit. If

the sensitivity formula derived previously is used,

adjoint problem for the displacement functional is

defined as follows.

(23)

(22)1Jfu = r uirds] r rds= U C

i: ire
1Jfa = r (JCrds/ r rds = (JCire i.

which means that traction discontinuity with unit

magnitude should be imposed at the interface.

The solution for this problem can also be

obtained analytically, which is for the inner

region at the interface,( 17)p~= a". p?=- a" at r = a

Analytic solution for the displacement and stress

at the interface are

(25)

Applying condition at the interface, solution for

adjoint problem is obtained as follows.

and for the outer region at the interface

",0. _ "'oc. ",0. _ b
2+a

2
"'oc. (26)

vr -v ,vB -- b2_a2v

0b2+ 20. _ a C4 a (Joe.
u; --2fLod b2-a2 '

O. I c4°b2-a2
oe.

Ur,r= 2fLod bZ- a2 (J

(18)

( 19)

UC=_a_.-.a"
2fL'C:'

and

(I +d) b2
_

(13+ d) b2+ (1- (3) a2 (J

/
.. d I+v S ....

where 13 = floct fL'c:' an C4=-1--' ensinvines-v
of U C and a" with respect to a are then obtained

by taking derivative by a as

(20) (27)
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line with abscissa a and the angle a from the
vertical axis as follows. (see Fig. 4)

The sensitivity for the stress functional is given by

Note in this case that integration path s is in z
direction. Therefore r = Vn=Sa, Vs=O, and
derivatives with respect to z are all zero. Then the
sensitivity for the displacement functional is given
by

lJf~=_I_[!r, {aC(u::r-um 8a+C

(at' -a3') 8a}~]
( ads +( (uc-IJl')8~i. ire

=aC(U:;r- ug) Sa- ~ uC(aJ*- ag*) Sa (28)

If (25-27) are applied, we get the identical result
to (21). Similarly for the stress functional, the
adjoint condition is given by

u£* - u%* = - VrP.= -I when k= r only

p~*+p~*=Vru.=O

Functionals are defined at the part of the interface
Fe as the square averages of displacement and
traction, i. e.,

(34)

(33)

(32)

Vr=z sec" a, v..=0
Vr.s=sec a, Vz,s=O

r=a+z tan a

.'
lJfu= ( (u:+u'i) mprds/( msrds (35)i: i:
lJfp= ( (J1;.+ tJz) msrds] ( msrdsire s;

Vr= ~~ =1, v..=0

Vr.s=O, Vz,s=O

and for a

Shear modulus and Poisson ratio are given as O.
3847, 0.3 for the inner, 0.5771 and 0.3 for the
outer cylinder. Displacement in the z direction is
fixed at the bottom line of the cylinder, and unit
traction is exerted at the external end. Design
variables in this problem are a and a of the
interface. Then the velocity vector and its tan
gential derivative is for a

(29)

(b 2- a2
)

<13+ cf) b2+ (1- (3) a2

(30)

at t;

and the solution is

Then the adjoint condition can be defined for lJfu

and those for lJfp can be defined similarly. Note
here that a mollifier function mp is introduced to
alleviate the discontinuity occurring at the end
points of re• Note further that in the sensitivity
formula (16), following term should be added
due to the presence of denominator in (35).

Boundary element model is made with 5 elements
at every external boundary segment, and 8 ele
ments at the interface. Four numbers of func
tionals are considered with each having 2 ele
ments for Te- Three cases are considered for the
mollifier function. First and second are quadratic
and constant function as

1

teads

(31)

(20) .

5. Numerical Example of Design
Sensitivity Analysis

This section considers more general case of
compound cylinder by numerical way. Consider a
compound cylinder having outer radius 2 and
height 1. The interface between the inner and
outer cylinder is expressed in this case as straight

ul*-u~*=O at rc

~*+ ~*={Vrul=2uimp, at r.ct:
p, p, 0, elsewhere of t:

- lJf ( (VSs+i:...) msrdsl-, r

(36)

(37)
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Table 1 Comparison of sensitivity by m« variation in compound cylinder

mp=I-TJZ mp=1 mp= I Equivalent

Finite Present Ratio Finite Present Ratio Finite Present Ratio
Diff. Method (%) Diff. Method (%) Diff. Method (%)

I .57E+0 .56E+0 99 .85E+0 .9IE+0 108 .85E+0 .84E+0 99

alJTu 2 .56E+0 .56E+0 99 .85E+0 .98E+0 116 .85E+0 .84E+0 99
aa 3 .56E+0 .56E+0 99 .84E+0 .97E+0 116 .84E+0 .83E+0 99

4 .55E+0 .55E+0 100 .82E+0 .89E+0 108 .82E+0 .8IE+0 99

I .72E-I .78E-I 108 .IIE+O .IlE+O 102 .IIE+O .IIE+O 101

alJTp 2 .72E-I .77E-I 106 .IIE+O .IlE+O 106 .IIE+O .IIE+O 99
aa 3 .73E-I .78E-I 108 .IIE+O .IIE+O 105 .lIE+O .IIE+O 103

4 .77E-I .59E-I 78 .IIE+O .12E+0 104 .IIE+O .IIE+O 96

1 .19E-2 .19E-2 99 .29E-2 .32E-2 III .29E-2 .29E-2 99

alJTu 2 .37E-2 .37E-2 100 .55E-2 .64E-2 116 .55E-2 .54E-2 99
aa 3 .53E-2 .53E-2 100 .80E-2 .93E-2 116 .80E-2 .79E-2 99

4 .67E-2 .67E-2 101 .1OE-I .IlE-I 107 .1OE-I .98E-2 98

I .12E-2 .10E-2 81 .20E-2 .2IE-2 103 .20E-2 .20E-2 98

alJTp 2 .40E-3 .44E-3 108 .6IE-3 .68E-3 112 .6IE-3 .65E-3 106
aa 3 .22E-4 .lOE-3 459 .37E-4 -.82E-4 ### .37E-4 .15E-3 409

4 .58E-3 .28E-5 I .IIE-2 .99E-3 93 .IIE-2 .94E-3 89

m ={I-r/, for the lst case, =(-1,
P I, for the 2nd case, TJ I) crt

(38)

While the 1s t one is continuous at the end points
of r" 2nd one brings about jumps. To remove this
problem, last one is to use equivalent value solv
ing an additional equation from the 2n d case by
weighted residual concept as

found best. Therefore using mp= I and the equiv
alent values, the sensitivities are computed when,
a=O°, 10° and 20°, which is shown in the Table
2. From the result, we can observe stable accuracy
even with the different geometry.

6. Design Sensitivity Analysis of
Endosseous Implant Shape

where f and feq denote original and equivalent
function value defined at r, and rc, and W is a
weighting function. In this case, the shape func
tion used for boundary element method is em
ployed. As the analytic solution is not available,
the computed sensitivity is compared to the finite
differences with 1% design variable increment.
Table I is the compared result of m; when the
design variables are a= I, a=O. Upper two row
blocks are sensitivity w. r. t. the translation of a

while the lower two are for the rotation of angle
a. Number in each block denotes the functional
id increasing from the bottom to the top. From
the table, use of mp:= I with equivalent value is

r feqWrds = r fWrdsJre )r~
(39) The endosseous implant-bone interface prob

lem is considered next as a practical application,
in which the stress value is of great importance for
successful osseointegration at the interface. A
tapered cylinder implant, which is relatively sim
ple in geometry, is chosen as a preliminary step
toward more practical study of many screw type
implants. Due to its geometry and loading condi
tion, the problem is considered axisymmetric. The
model consists of three zones, which are implant,
cancellous bone and cortical bone. The problem
is to find the height h and the taper angle a such
that the stress value at the interface between the
cancellous bone and the implant is maintained at
a certain specified level. The lower end of the
implant has semi-circular shape. The radius and
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Table.2 Sensitivity by angle a increase in compound cylinder

a=o· a=lO° a=20D

Finite Present Ratio Finite Present Ratio Finite Present Ratio
DitT. Method (%) DitT. Method (%) DitT. Method (%)

I .85E+O .84E+O 99 .89E+O .89E-I 100 .94E+O .48E-1 101

alJfu 2 .85E+O .84E+O 99 .92E+O .92E-I 100 .IOE+ I .5IE-I 101
aa 3 .84E+O .83E+O 99 .95E+O .95E-I 100 .IIE+I .55E-1 101

4 .82E+O .8IE+O 99 .97E+O .97E-1 100 .I2E+ I .58E-I 101

I .IIE+O .IIE+O 101 .IIE+O .IIE-I 98 .IIE+O .53E-2 102

alJfp 2 .IIE+O .IIE+O 99 .12E+O .IIE-I 98 .IIE+O .53E-2 94
aa 3 .IIE+O .IIE+O 103 .13E+O .13E-I 103 .13E+O .70E-2 105

4 .IIE+O .IIE+O 96 .13E+O .13E-I 98 .16E+O .8IE-2 99

I .29E-2 .29E-2 99 .33E-I .33E-2 100 .79E-I .40E-2 101

alJfu 2 .55E-2 .54E-2 99 .64E-I .64E-2 100 .16E+O .79E-2 101
aa 3 .80E-2 .79E-2 99 .96E-1 .96E-2 100 .25E+O .12E-I 101

4 .IOE-I .98E-2 98 .13E+O .13E-1 100 .35E+O .17E- I 101

I .20E-2 .20E-2 98 -.27E-I -.28E-2 101 -.I4E+O -.67E-2 99

alJfp 2 .6IE-3 .65E-3 106 -.43E-I -.42E-2 99 -.17E+O -.86E-2 99
aa 3 .37E-4 .15E-3 409 -.46E-I -.44E-2 97 -.I7E+O -.84E-2 98

4 .IIE-2 .94E-3 89 -.39E-I -.4IE-2 105 -.16E+O -.85E-2 103

Fig. 4 Compound cylinder problem for numerical
implementation

h

Fig. 5 Tapered cylinder implant problem

'F ~ ~ 'r

A
. 0 2

Implant

~ I~

a
0 3

Cortical
B Bone

-----~ 1

~~1l0US
Bonec

example are considered. Having 2 elements per a
functional, 6 functionals are defined at the inter
face from point A to 8 of Fig. 5. Deformed shape
of the whole domain and square of the traction
distribution along the interface are shown in Fig.
6, where severe concentration of the traction is
found at point A. The sensitivity values are

a

z

height of cortical bone are 6.5 and IOmm. The
thickness at the bottom and top of the cortical
bone is 1.5, and at the right side is Zmm. Implant
radius is Zmm- At the top of the implant, uniform
traction is applied such that magnitude of the
total force is lOON. Shear moduli for the implant,
cortical and cancellous bone are 117.e3, 20,e3, 2.
e3N / mm: and Poisson ratios are 0.3 all together.
Interface to be varied is the tapered straight line
between the implant and cancellous bone.
Though the reasonable measure for the stress
evaluation is von Mises stress, this paper treats
only traction values as a preliminary study.
Therefore same functionals as in the previous
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Table 3 Sensitivity result of the implant problem

Finite Present Ratio Finite Present Ratio
Diff. Method (%) Diff. Method (%)

I -.IOE-7 -.10E-7 101 I .47E-8 .46E--8 98
2 I.13E-7 -.13E-7 100 2 .46E-8 .45E-8 98

alJfu 3 -.15E-7 -.15E-7 100 sv; 3 .45E-8 .44E-8 98
ah 4 -.17E-7 -.17E-7 100 aa 4 .42E-8 .4IE-8 98

5 -.18E-7 -.18E-7 101 5 .39E-8 .38E-8 98
6 -.19E-7 -.2IE-7 107 6 .36E-8 .38E-8 104

I -.29E+I -.30E+I 104 I .93E+0 .82E+0 88
2 -.34E+0 -.33E+0 98 2 .17E+O .17E+0 101

alJfp 3 -.24E+0 -.24E+0 101 alJfp 3 .14E+0 .14E+0 100
ah 4 -.22E+0 -.23E+0 100 aa 4 .12E+0 .12E+0 99

5 -.25E+0 -.24E+0 95 5 .IIE+O .IIE+O 100
6 -.28E+0 -.17E+0 62 6 .89E-I .89E-I 101

bJ II
\

• 0 0 0 0-

(a) Deformed shape of the implant

16.00

l
Ql

Oi 12.00

"Cj

'"c: 8.00
~
o
Ctl 4.00 I

~ I

0.00
0.00 OB4 1.67 2.51 3354.16 4B8 5.60 632

Point A Point B Point C

Distance from A

(b) Traction square distribution along the interface

Fig. 6 Boundary element analysis result of the
implant problem

compared with the finite differences, and listed in
Table 3. Since this problem deals with 3 zones,

accuracy of the 1st functional which includes
point A is more concerned. The resulting values
104% and 88% shows favorable accuracy. More
over even for the regions with lower magnitude,

the accuracy does not degrade much which prom
ises that the method can be used as an efficient
and reliable tool in the optimization procedure
for the implant design.

7. Conclusion

Boundary integral method is applied to the
interface problem of axisymmetric elasticity. Sen

sitivity formulae for displacement and traction
functionals are derived in terms of the interface
shape variation. The adjoint system is then
defined such that a jump condition is imposed
across the interface, which means more generali

zation should be made for the analysis code to
enable the jump condition. A special boundary
element program has been developed to this end
for multi-zone axisymmetric elasticity, which

enables such kind of jump conditions. A simple
compound cylinder problem is considered to
show the validity of the present method in ana
lytic as well as numerical way. Three cases of

mollifier function are studied and the use of
equivalent values for the unit step function
defined over the boundary is found best for the
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sensitivity. As a more practical example, implant
design problem with a tapered cylinder shape is
considered. Accuracy of the sensitivity at the
implant bone interface is shown to be excellent
even at the point with 3 zones in common, which
promises that the method can be used as an
efficient and reliable tool in the optimization
procedure for the implant design. Study for more
complex implant model and optimization such as
screw type will be reported in near future.
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